1. Introduction

2. Contribution A: SG-t-SNE

3. Contribution B: SG-t-SNE-Π

4. Key references
1. Introduction
 - Graph embedding
 - Precursor work
 - Significant impact
 - Main limitations

2. Contribution A: SG-t-SNE

3. Contribution B: SG-t-SNE-Π

4. Key references
Introduction: graphs & graph embedding

Graph/network G(V, E): relational data

- increasingly arise in various applications:
 - biological, social, friend networks, food webs, co-author networks, word co-occurrence networks, product co-purchase networks, . . .

Graph (vertex) embedding:

Mapping/encoding: \(V = \mathcal{X} \rightarrow \mathcal{Y} \subset \mathbb{R}^d \)

- word embedding (of a co-occurrence graph)
- image embedding (of a nearest-similarity graph)
- product embedding (of a co-purchase graph)
- user embedding (of a friend network)

...to facilitate many tasks of graph data analysis

Social network orkut with \(n = 3,072,441 \) user nodes and \(m = 237,442,607 \) friendship links: Degree distribution (top) and 2D embedding (bottom)
SNE: stochastic neighbor embedding algorithm

\[\mathbf{X} = \{ \mathbf{x}_i \}_{i=1}^n \]

\[\mathbf{Y} = \{ \mathbf{y}_i \}_{i=1}^n \in \mathbb{R}^d \]

SNE^1 pipeline illustrated with spatial embedding of
\(n = 1,306,127 \) RNA sequences of E18 mouse brain cells

^1Hinton and Roweis, NIPS, 2003 10x Genomics, App Note, 2017
t-SNE: t-distributed SNE

From input vertex data $\mathcal{X} = \{x_i\}_{i=1}^n$

Find kNNs among $\mathbf{D} = [d^2(x_i, x_j)]_{n \times n}$

Cast \mathbf{D}_{kNN} to stochastic $\mathbf{P} = [p_{ji} + p_{ij}] / 2$

$\quad p_{ji}(\sigma_i) = \frac{1}{Z_i} \exp(-d_{ij}^2/2\sigma_i^2)$ (Gaussians)

with σ_i determined by the perplexity equations

$- \sum_j a_{ij} p_{ji}(\sigma_i) \log(p_{ji}(\sigma_i)) = \log(u), \quad \forall i \quad (1)$

u: **perplexity** parameter chosen by the user

Vertex embedding coordinates

$\mathcal{Y} = \{y_i\}_{i=1}^n \in \mathbb{R}^d, \quad d = 1, 2, 3, \ldots$

Follow t-distribution (Cauchy kernel)

$\mathbf{Q}: \quad q_{ij} = \frac{1}{Z_i} (1 + ||y_i - y_j||^2)^{-1}$

Determined by the best distribution matching measured by KL divergence1

$\mathcal{Y}^* = \arg\min_{\mathcal{Y}} \KL(\mathbf{P}\|\mathbf{Q}(\mathcal{Y}))$

1van der Maaten and Hinton, JMLR, 2008

Pitsianis Iliopoulos Floros Sun (AUTh|Duke)

Embedding of Sparse Stochastic Graphs

IEEE HPEC19 | Sep 25, 2019
t-SNE: iterative embedding process

\[\mathcal{X} = \{x_i\}_{i=1}^n \]

\[\mathcal{Y} = \{y_i\}_{i=1}^n \in \mathbb{R}^d \]

- \(x_i \): pixels in digit image
- \(\mathcal{X} \): input data
- \(\mathcal{Y} \): output data

\[G(V, E_k) \quad G(V, E_k, W_k) \]

- \(kNN \) graph
- distribution matching

\[\text{SNE}^1 \] pipeline illustrated with spatial embedding of
\(n = 60,000 \) handwritten digits (MNIST dataset)

1 Hinton and Roweis, NIPS, 2003
2 LeCun et al., Proc IEEE, 1998
Significant impacts

With low-dim. spatial embedding in particular, the SNE/t-SNE algorithm family has enabled

- visual inspection, identification of connections/separations
- network-based analysis for hidden connections
- hypothesis generating and scientific discoveries

Amir et al., Nat Biotechnol, 2013
Abdelmoula et al., PNAS, 2016
van Unen et al., Nat Commun, 2017
Main limitations

▷ Restricted to data in a metric space

▷ Restricted to kNN-based stochastic graphs

Degree k and perplexity u are coupled by condition $0 < u < k$ implied in (1)

Vertices of a network do not necessarily readily reside in a metric space

A typical economic phenomenon:

low-degree nodes in majority
hub nodes in minority

Irregular in degree distribution

Defying the parameter condition $u < \text{deg}(i)$

Irregular degree distribution for each of three real-world networks:

Low-degree nodes (including leaf nodes) in majority; high-degree nodes in minority.
Main limitations

- Existing software programs* are limited, due to slow computation speed, to
 - small graphs, or
 - 1D/2D embedding

Many networks are large;

Spaceland (3D) embedding has much greater potential in preserving/encoding more structural information

(Left) kNN graph ($k = 150$) for a Möbius strip on a 256×32 lattice, with $n = 8,192$ nodes,
(Middle) 2D embedding with missed/unresolved connections,
(Right) 3D embedding with correct connections, also offering multiple or steerable views.

* van der Maaten, JMLR, 2014 https://lvdmaaten.github.io/tsne
Linderman et al., Nat Methods, 2019 https://github.com/KlugerLab/FIt-SNE

1. Introduction

2. Contribution A: SG-t-SNE
 - Admitting arbitrary stochastic graph (SG)
 - Enabled embeddings of real-world graphs

3. Contribution B: SG-t-SNE-Π

4. Key references
SG-t-SNE: stochastic graph t-SNE

\[X = \{x_i\}_{i=1}^n \]
\[Y = \{y_i\}_{i=1}^n \in \mathbb{R}^d \]

\[G(V, E_k) \]

embedding in \(\mathbb{R}^2 \)

\[G(V, E_k, W_k) \]

cast/scale stochastic weights on \(E \)

distribution matching

\[G(V, E, P(\lambda)) \]

SG-SNE pipeline admitting two types of input

(top) embedding of \(n = 1,306,127 \) RNA sequences of E18 mouse brain cells

(bottom) embedding of \(n = 8,381 \) peripheral blood mononuclear cells

SG-t-SNE: distinctive extension & the keystone

Distinctions:

◇ Admitting arbitrary stochastic graph \(P = [p_{j|i}] \)
i.e., extend the embedding to the entire family of stochastic graphs

◇ Making it feasible to exploit sparse connection pattern for
 - investigative/explorative data analysis
 - higher computation efficiency

Key: the stochastic reshaping/rescaling equations: \(\forall i \)

\[
\sum_j a_{ij} \phi(p_{j|i}^{\gamma_i}) = \lambda \quad \Rightarrow \quad p_{j|i}(\lambda) = \frac{a_{ij} \phi(p_{j|i}^{\gamma_i})}{\lambda},
\]

\(\lambda > 0 \): re-scaling parameter; \(\phi \geq 0 \): reshaping function, monotonically increasing

\(A = [a_{ij}] \): the binary-valued adjacency matrix;

Solutions \(\gamma_i \) exist unconditionally

\(^1\)We used \(\phi(x) = x \) for the presented embeddings
Enabled embedding of Amazon product co-purchase network

Amazon product sale network: $n = 334,863$ products, $m = 1,851,744$ edges for co-purchase connectivity, irregular degree distribution. (Left) 2D product embedding enabled by SG-t-SNE; (Right) two product clusters/subgraphs, the vertices for each are embedded closer together, with denser intra-connections.

Yang and Leskovec, K&IS, 2015

<table>
<thead>
<tr>
<th>ID</th>
<th>n_{sub}</th>
<th>e_{in}</th>
<th>e_{out}</th>
<th>w_{in}</th>
<th>w_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(534)</td>
<td>44</td>
<td>374</td>
<td>20</td>
<td>71.7</td>
<td>2.4</td>
</tr>
<tr>
<td>(678)</td>
<td>70</td>
<td>506</td>
<td>19</td>
<td>114.6</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Enabled embedding of social network **orkut**

Social network **orkut**: $n = 3,072,441$ user nodes, $m = 237,442,607$ friendship links.

(Left & Middle) 3D and 2D embeddings enabled by SG-t-SNE;

(Right) **Findings**: There is a weak-link zone (easier to observe in 3D embedding), calibrated communities reside on one or the other side; the rich structure reflects/decodes information of geophysical regions and cultural diversities.

Yang and Leskovec, K&IS, 2015
SG-t-SNE: exploiting sparse patterns

- Vertex data: 8k peripheral blood mononuclear cells (PBMCs)
- PBMC embedding via kNN graphs by a cell similarity measure
- SG-t-SNE can use a much sparser neighbor graph

PBM cells are color coded by provided labels with the data.

Zheng et al., Nat Commun, 2017
1. Introduction

2. Contribution A: SG-t-SNE

3. Contribution B: SG-t-SNE-Π
 - Challenges in gradient updates
 - Fast calculation of sparse interactions
 - Fast calculation of dense interactions
 - Fast data translocation
 - Comparisons in performance

4. Key references
SG-t-SNE-Π: enabling spaceland (3D) embedding

\[X = \{ x_i \}_{i=1}^n \]

or

\[Y = \{ y_i \}_{i=1}^n \in \mathbb{R}^d \]

SG-SNE-Π: high-performance pipeline admitting two types of input
(top) embedding of \(n = 1,306,127 \) RNA sequences of E18 mouse brain cells
(bottom) embedding of \(n = 8,381 \) peripheral blood mononuclear cells
Comparison in neighborhood preservation

(Left and Middle) RNA sequence embeddings in 3D and 2D, respectively, via kNN graph ($k = 90$) with $n = 1,306,127$ RNA sequences of E18 mouse brain cells and 1,000 principle gene components.

(Right) Comparison in neighborhood recall shows the advantage of 3D embedding.
Iterative embedding search: computational challenges

The computation bulk is in iterative gradient updates. van der Maaten re-formulated the gradient in two interaction terms

$$\frac{\partial (KL(P\|Q(Y)))}{\partial y_i} = \frac{4}{Z} \sum_{i \neq j} p_{ij} q_{ij} (y_i - y_j) - \frac{4}{Z} \sum_{i \neq j} q_{ij}^2 (y_i - y_j),$$

attractive interaction

repulsive interaction

- **PQ** = [$p_{ij} q_{ij}$]: kernel matrix of the attraction term, **sparse** and **irregular**
- **QQ** = [$q_{ij} q_{ij}$]: kernel matrix of the repulsion term, **full** and **irregular**

 with **exploitable structure** by Barnes-Hut algorithm\(^1\) or by nuFFT-based factorization\(^2\)

- Both sparse and compressive interactions tend to suffer from memory latency or inadequate parallel scheduling due to irregular memory accesses

 Each term in need of high-performance algorithm-software support, especially on desktop, laptop computers for individual researchers

\(^1\) van der Maaten, JMLR, 2014 \(^2\) Linderman et al., Nat Methods, 2019
Accelerated gradient updates by SG-t-SNE-Π

\[
\frac{\partial (KL)}{\partial y_i} = \frac{4}{Z} \sum_{i \neq j} p_{ij} q_{ij} (y_i - y_j) - \frac{4}{Z} \sum_{i \neq j} q_{ij}^2 (y_i - y_j),
\]

attraction: \(PQ = [p_{ij} q_{ij}]\)

repulsion: \(QQ = [q_{ij} q_{ij}]\)

Fast interaction with sparse PQ
- same sparse pattern as \(P\), which is reordered (once) to a pattern of block sparse with denser blocks (BSDB)
- modified Compressed Sparse Blocks (CSB) library\(^1\)

Fast interaction with compressed QQ
- utilized an internal equi-spaced grid in two ways
- scattered data points binned into grid cells
- formulated a kernel splitting on the grid instead of augmenting the grid size by 2x in each dimension

\(^1\)Buluç et al., ASPAA, 2009 Pitsianis et al., JOSS, 2019
By \(\Pi \) we refer to **data permutation and physical relocations** within each interaction, also in between, at every iteration step.

The **fast data translocation problem**

Data \(\mathcal{Y} \) available in ordering \(a(\mathcal{Y}) \), to be accessed in a different ordering \(b(\mathcal{Y}) \).

Determine a data translocation scheme to carry out \(\Pi : a(\mathcal{Y}) \rightarrow b(\mathcal{Y}) \) in shortest time subject to computing platform specifics.

Solution: architecture-adaptive decomposition of the permutation toward

- optimal data locality
- maximal utilization of parallel resources
- best payoff with data translocation overhead
Comparison in execution time for embedding of kNN graphs, $k \in \{30, 90\}$, with $n = 1,306,127$ nodes as single-cell RNA sequences of E18 mouse brain cells. Each embedding takes 1,000 iterations and maintains an approximation error below the same tolerance (10^{-6}).

1. 10x Genomics, App Note, 2017
Recap

- **SG-t-SNE**: enables embedding of arbitrary stochastic graphs
 - including kNN graphs generated by vertex data
 - embeddings of large real-world graphs reveal characteristic structures and new information

- **SG-t-SNE-II** enables fast spaceland (3D) embedding
 - preserve more neighborhood connection, structure info.
 - offer multiple vantage points
 - open source software and supplementary material at http://t-sne-pi.cs.duke.edu

Acknowledgments: We thank Tiancheng Liu and anonymous reviewers for their valuable input and comments, thank Pantazis Vouzakis and Xenofon Theodoridis for their assistance in experiments.
1. Introduction

2. Contribution A: SG-t-SNE

3. Contribution B: SG-t-SNE-Π

4. Key references
References

